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ABSTRACT 

The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Workbench is a graphical user 
interface (GUI) that provides a common analysis environment for the accelerated use of the NEAMS 
toolkit. To improve design and analysis of current and future nuclear energy systems, the NEAMS 
Workbench provides an integrated development environment for model creation, review, execution, 
output review, and visualization for integrated tools. In addition to a GUI, the NEAMS Workbench 
provides the Workbench Analysis Sequence Processor, an open-source tool set that facilitates input-
content assistance for supported domain-specific input languages and user-friendly syntaxes. These 
supported syntaxes enable accelerated development and deployment of enhanced user inputs and 
workflows. The Multiphysics Object-Oriented Simulation Environment (MOOSE) has been supported in 
the NEAMS Workbench since 2016 and receives continuous updates. Efforts to improve MOOSE-based 
tool integration in the NEAMS Workbench are ongoing. This document details the current and planned 
enhancements of the NEAMS Workbench and the MOOSE framework to improve integration and 
usability of MOOSE-based applications within the NEAMS Workbench. 

1. INTRODUCTION 

The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Workbench initiative started in 2016 
to provide a common analysis environment for the accelerated use of the NEAMS toolkit [1]. By 
providing an integrated development environment that facilitates the model creation, review, execution, 
output review, and visualization for integrated tools, the NEAMS Workbench consolidates code 
interactions and can shorten model development iterations. The Workbench is composed of three software 
components: (1) the desktop application or graphical user interface (GUI), (2) the application run time 
environment (RTE), and (3) the analysis sequence processor. The GUI provides an advanced text editor, 
local and remote job launch capability, constructive solid geometry (CSG) visualization, 2D data plotting, 
and an integrated mesh visualization and data analysis toolkit (VisIt or ParaView). The advanced text 
editor provides input content assistance for accelerated model creation, editing, navigation, and 
verification. The CSG model visualization enables visual verification of geometry prior to job launch for 
integrated codes using CSG modeling methods. RTE is a Python scripting interface that normalizes the 
Workbench interaction with local and remote job launches. Additionally, the RTE provides an extensible 
workflow environment for specific analysis needs and serves to provide reproducible job execution and 
an extensible application integration point. Remote job launch enables users to remain on a familiar 
operating system while leveraging remote computing capabilities. The Workbench analysis sequence 
processor (WASP) provides an open-source, domain-specific language processor toolkit from which 
Workbench-integrated code input is lexed, parsed, interpreted, and validated. In addition to language 
processors, WASP provides tools to assist with input generation and analysis workflows, as needed, for 
application RTEs and the GUI [2]. 

Since the inception of the NEAMS Workbench, the vision has been to support multiphysics workflows as 
provided by the Multiphysics Object-Oriented Simulation Environment (MOOSE) and as needed by the 
user community. Per user feedback, a focus on integrating applications and existing workflows has been 
prioritized, with demonstrated successes in neutronics [3,4], thermal hydraulics [5], fuel analysis and 
performance [6], and associated model uncertainty quantification and optimization [7, 8]. 

In FY21, the primary goal was to complete integration of MOOSE-based applications into the NEAMS 
Workbench. Specifically, work was undertaken to (1) ensure that the content assistance provided by the 
Workbench was consistent with the MOOSE input processor, (2) provide problem mesh visualization and 
face/block highlighting for select regions, (3) provide solution visualization, (4) ensure support for 
MOOSE MultiApp inputs, (5) allow mesh overlay of coupled calculations, and (6) include key result 
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extraction and plotting. The remainder of this document will describe the Workbench components 
involved, work accomplished to date, and future work. 

1.1 WORKBENCH ANALYSIS SEQUENCE PROCESSOR (WASP) 

The WASP provides open-source C++ lexers, parsers, and interpreters for language syntaxes that 
facilitate the NEAMS code’s integration into the Workbench. The languages are generic and are 
incorporated to facilitate the reuse and development of new codes and workflows. The language 
processors typically produce parse-tree data structures. In addition to the language processors, WASP 
contains a hierarchical input validation engine and template engine. The validation engine applies a 
language input schema that describes the structure and component restrictions to validate that a given 
input conforms to the application requirements. Any input components that do not adhere to the input 
schema are flagged with a descriptive error message highlighting the location and cause of the problem. 
The hierarchical template engine facilitates workflows that require input generation and input component 
autocompletion as delivered by the NEAMS Workbench’s content assist capabilities. Lastly, WASP 
includes command line programs for listing, selecting, converting, and validating supported syntaxes. 
These aid in integration development, general input tasks, and related workflows. 

WASP includes features that help domain researchers quickly design and process application user input 
and provides a reusable component that reduces research software engineering costs. Furthermore, the 
user-approachable input syntaxes and NEAMS Workbench content-assist features accelerate deployment 
and user-adoption. The development of the Economics Dispatch Genetic AlgoRithms code, known as 
EDGAR, is an example of this researcher-friendly workflow [8]. 

The formalization of integrated development environments has manifested in Microsoft’s Language 
Server Protocol (LSP) [9]. The LSP provides a language server to communicate input diagnostics and 
content assistance across program process boundaries. The LSP will reduce maintenance overhead, 
improve interface stability, and enable the native MOOSE input framework’s diagnostics and data 
structures to be communicated to Workbench. This protocol has been identified as the best path forward 
for sustainable integration of the MOOSE framework into the NEAMS Workbench, and future integration 
efforts will pursue this development path. 

1.2 LANGUAGE SERVER PROTOCOL (LSP) 

The Microsoft LSP provides language-specific content assistance between a single language server and 
what could be multiple input/editor/development tools. By enabling inter-process communication via a 
JavaScript Object Notation (JSON) remote procedure call [10], the language protocol enables a one-to-
many coupling strategy that is economically attractive for supporting domain-specific languages. An LSP 
feature overview is outside the scope of this document, but the features are full and matured enough to be 
incorporated into widely adopted integrated development environments such as Visual Studio Code, the 
Eclipse integrated development environment, EMACS, and Vim [11]. Because the NEAMS toolkit is 
under active development, the ability to harness the software development environments used for tool 
development is an attractive benefit of natively supporting the protocol in the MOOSE framework. 
Consolidating developer-software and software-input interactions will enable developers to use the same 
input interaction mechanisms as end-users, thus improving user experience and shortening user-feedback 
cycles. 

The integration of LSP into the NEAMS Workbench has already facilitated support for the MCNP6 
code [12]. Per developer iterations between the MOOSE and Workbench teams, the use of a MOOSE-
embedded language server is the best direction for current and subsequent integration investments. This 
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move will avoid development of duplicate software and will ensure that the MOOSE input features and 
diagnostics are most accurately served to the user. 

1.3 RUN TIME ENVIRONMENT (RTE) 

The Workbench’s RTEs are interface scripts for normalizing the interaction between the Workbench and 
the individual tool or application. The most basic functionality is the communication and configuration of 
command line arguments. This enables a tool to have multiple run configurations within Workbench. The 
RTE enables configuration of remote machines or execution of jobs on the user’s local machine. The 
remote machines require an installation of Workbench and the application but can be run in a scheduled 
(e.g., PBS, SLURM, IBM LSF) or unscheduled remote environment. These run configurations can be 
edited as needed or saved as ready-to-select local or remote job-launch configurations. 

2. WORKBENCH AND MOOSE APPLICATION INTEGRATION 

Development and testing of the MOOSE framework and the NEAMS Workbench has required 
considerable effort and resources. With both projects under active development, the integration testing 
has required special attention to prevent feature regression. Additionally, software licensing and export 
control restrictions have further complicated or delayed integration efforts. Workbench integration testing 
involves generating the MOOSE application’s input schema and subsequently using the generated schema 
to validate application inputs. Results convey problem areas that need improvement. The following 
subsections detail the process and improvements implemented during FY21. 

2.1 TESTING 

Beyond running the typical continuous integration test suites for Workbench, an additional level of 
application integration testing is regularly performed to identify and prevent regressions in application 
integration. The primary component of integration is the user input. For each supported application, the 
application is compiled, and its input schema is generated. This step ensures that the development 
environment configuration and schema generation are functional. For MOOSE applications, 
the --definition command line argument generates the WASP-formatted schema data. Subsequently, each 
functional application test input (functional because it is expected to not fail) is run through the respective 
WASP validation program. This process checks that the syntax and semantics are still supported. To date, 
regressions in integration have subsequently prevented integration within the NEAMS Workbench from 
reaching 100% input accuracy. For example, a legal MOOSE input component is nonetheless thought to 
be invalid by Workbench. Most regressions are quickly addressed, but deficiencies remain in the NEAMS 
Workbench’s input accuracy. These problems have led development teams to pursue consolidating and 
improving input processing and diagnostics by using a language server embedded in the MOOSE 
framework and inherited by all MOOSE applications. 

Some details of MOOSE’s input schema generation are unavailable, which has also made the omission of 
specific validation restrictions necessary. The validation rule that ensures referential components are 
defined in their respective input locations is one example. For instance, all variables must be defined in a 
Variables or AuxVariables block, and all functions must be defined in a Functions block. The MOOSE 
framework does provide information that the schema generator uses to build relative lookup paths for any 
input context containing a referential component. Workbench could then validate that all references have 
been properly defined elsewhere in the input. However, it was discovered through integration testing 
across various MOOSE applications that the MOOSE framework does not verify that a piece of input is 
defined in its respective definition block until that component is used in the calculation. This was then 
confirmed by the MOOSE development team. 
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In most cases, this validation rule is beneficial because it warns users about any undefined input or typos 
that can cause name mismatches. However, the integration testing revealed many examples of legal input 
with components that were undefined because they were never actually used in the calculation. 
Workbench’s input validation engine cannot identify which pieces of input are used and which are not 
used by the calculation without building the calculation itself. In this case, the MOOSE framework is 
necessary for determining a class of input validation using input introspection. 

For this specific situation, it was decided that false positive reports would be more disruptive to a user’s 
workflow than unreported invalid cases. Therefore, this entire validation rule was removed from the 
schema generation for all MOOSE applications. However, a new schema rule was generated to apply 
these lookup paths to Workbench’s autocompletion recommendation lists without using them for input 
validation. The direct integration of the language server into the MOOSE framework will remedy these 
validation problems as MOOSE’s native input processor will be used for introspection to decide if 
something is illegal. 

2.2 IMPROVEMENTS 

In FY21, the MOOSE framework was improved through continuous integration with WASP. This process 
proactively highlights regression in WASP’s support of MOOSE syntax and semantics. 

Workbench performs integration testing on the input processing for each MOOSE application in multiple, 
successive steps. First, Workbench constructs a list that contains all application input files to be tested. 
Every MOOSE application has a test harness that can be executed with various command line options to 
perform a suite of regression tests. Most of these tests execute the application on a given input file, and 
then they check the output for expected results. Workbench’s integration testing system uses the test 
harness of each application as a starting point to gather its list of testable input files. 

The --dry-run and --verbose command line options are provided to the MOOSE application test harness 
which outputs the path of each directory and input file that would be used for every regression test 
without actually executing any of the tests. This output is generated as a list of absolute paths to every 
input file tested by the application. Notably, some input files will contain expected input errors because 
they are being tested for failures by the application’s test harness. These input files must be filtered from 
Workbench’s integration test list because they are not expected to be valid. This filtering is completed by 
executing MOOSE’s --check-input option on each input file and only keeping those that report a valid 
syntax. 

The tested MOOSE application is then executed with the --definition command line option to generate its 
WASP-formatted input schema. Next, a WASP utility attempts to parse every input file in the previously 
constructed list. Any input that does not completely parse without a syntax error fails the integration test. 
All inputs that successfully parse without error are then validated by another WASP utility that applies the 
previously generated application input schema. Any input that produces validation errors fails the 
integration test. Therefore, for an input to pass, its syntax must be successfully parsed, and its data must 
be regarded as valid by the rules contained within its application input schema. 

This style of test iteration lends itself to easy classification of errors and prioritization of fixes for the 
tested MOOSE applications. All input files that fail the integration test are automatically grouped by their 
reason for failure. These failure causes usually point directly to the issue that must be addressed. For 
example, parsing failures must generally be addressed in the WASP parser package, whereas validation 
failures must be addressed in the MOOSE schema generation code or deeper in the MOOSE input 
framework. In each case, a ticket is opened to describe the issue, impact, and frequency so that the 
problem can be fixed quickly. This automated integration testing and subsequent fixes to the framework 
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have resulted in significant improvements to the Workbench’s input processing of MOOSE applications 
during FY21. A summary of these improvement metrics is presented in Table 1. 

Table 1. Summary of improvement metrics 

 October 2020 August 2021 
 Inputs passing Inputs failing Success rate Inputs passing Inputs failing Success rate* 

MOOSE 738 809 47.71% 1,621 53 96.83% 
BISON 46 1,096 4.03% 1,322 17 98.73% 
SAM 288 43 87.01% 331 62 84.22% 
Total 1,072 1,948 35.50% 3,274 132 96.12% 

(*) Code changes enabling August 2021 success rates may not yet be merged into MOOSE or Workbench. 

The low success rates for MOOSE and BISON in October 2020 were caused by a change in the JSON 
library used in the MOOSE framework, in which a slight change in string behavior exposed a deficiency 
in integration testing. The 132 (or 3.88%) failing inputs were caused by 5 kinds of false validation 
errors (Table 2). These validations errors were primarily caused by inadequacies in the Workbench 
processors or missing data in MOOSE’s input schema. 

Table 2. Validation error types 

Type File count Failure percent of 132 
Invalid input 104 80% 
Type failure 72 55% 
Wrong value type 15 11% 
Unexpected occurrences 10 8% 

An Invalid Input is defined as an input field that exists in the input but is not listed in the input schema. 
This occurs in 80% of the failed inputs. Type Failures constitute 55% of failures, and Wrong Value Types 
constitute 11% of failures. These failure types are caused primarily by Workbench’s current inability to 
incorporate variable references. As a result, the variable name (a string), not its value, is type checked. 
Examples of field type checks are minimum or maximum value validation. As the name suggests, 
Unexpected Occurrence failures indicate that the expected occurrence of an input field is not expected. 
All outstanding integration issues are an argument for consolidating MOOSE input processing under an 
LSP. 

2.3 WORKBENCH MOOSE APPLICATION FEATURES 

Although all desired features are not yet implemented, this section highlights the features available as of 
this writing.  

2.3.1 Application Configuration and Local and Remote Job Launch 

Workbench supports launching jobs on the user’s local machine or on a remote computing resource as 
scheduled or unscheduled jobs. The user can configure an application to enable convenient execution of 
application features and have these configurations simultaneously available in the same user session. 
Workbench enables configurations for small test executions on the user’s local machine, larger jobs only 
requiring a more powerful remote desktop workstation, or the largest jobs involving scheduled compute 
resources and associated scheduler parameters. 
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In the case of MOOSE applications, users can launch the application with a select input or simply have 
the application generate the associated mesh file once the mesh generation parameters have been edited. 
Figure 1 illustrates a default configuration, Bison_wr9 1, and a custom configuration, Bison_wr9-mesh-
only). In the Bison_wr9-mesh-only configuration, the MOOSE application will generate the exodus mesh 
file, and Workbench will present the file in the Associated Files context menu. 

 
Figure 1. Multiple MOOSE application remote run configurations.  

Because active development produces frequent changes to MOOSE applications, including changes to 
input, Workbench enables users to easily reload the application’s “Grammar.” The grammar is composed 
of the input schema, syntax highlighting rules, and input templates. For example, if a developer or user 
updates the MOOSE application with a new AuxKernel, then clicking the Load Grammar button will 
query the MOOSE application and obtain the new input field’s definition. 

2.3.2 Input Content Assistance 

The Workbench content assistance incorporates syntax highlighting for improved visual recognition of 
input and features to assist users in navigating, creating, and editing inputs. Allowing input format and 
documentation editing are intrinsic features of Workbench, but traditional GUIs often do not allow access 
to the actual ASCII input and instead present data in widgets. These widgets require additional software 
maintenance and specific logic to handle documentation styles. For example, does a user comment exist 
above, after, or below an input field? Workbench focuses features on accelerating a user’s interaction 
with the application’s native input, not a widget library prone to subjective user opinion which can create 
distracting discussion involving what is easiest widget-form to use. This strategy has the added benefit of 
increasing user-focus on the native input format and its ease-of-use, helping better prioritize user-facing 
developer activity. 

2.3.2.1 Syntax Highlighting 

Improved visual presentation of input facilitates more input recognition and less memory recall, thereby 
reducing navigation times and improving user comprehension [13]. As shown in Figure 2, syntax 
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highlighting of MOOSE input improves recognition of syntax constructs, parameter bocks, and associated 
labels and values. 

 
Figure 2. MOOSE input syntax highlighting. 

As shown in Figure 3, the user can change the default syntax colors and styles for a given application using 
Workbench’s grammar settings. To accommodate a user’s input extension preference, the extension for which 
one wishes to apply the grammar settings can be customized to include different or additional file extensions. 

 
Figure 3. MOOSE syntax color settings. 

2.3.2.2 Autocompletion 

Because the Workbench processes the application input schema and input syntax, it recognizes the 
context in which the user’s cursor resides. This capability enables Workbench to present a list of available 
input edit actions to the user (Figure 4). These actions allow a user to preview available components with 
documentation snippets and to quickly recognize referential data entries (Figure 5), thus accelerating 
input creation and editing. Additionally, Workbench identifies which input fields are referential, making it 
easier for the user to quickly navigate to the definition of the reference.  
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Figure 4. MOOSE application mesh component autocomplete listing with documentation snippets. 

 
Figure 5. MOOSE application referential input autocomplete listing. 

2.3.2.3 Automatic Input Checking 

Upon processing an input file, the Workbench applies the application schema to the generated parse tree 
and produces the list of problems to the user in the editor’s Validation panel (Figure 6). As the user edits 
the input, the document is rechecked, and the Validation panel’s listing is updated. 
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Figure 6. Interactive input validation panel. 

Clicking an entry in the Validation panel’s list will place the user’s cursor at the indicated location, 
enabling the user to quickly examine the problem. The Workbench provides general error messages that 
effectively communicate many of the problems in an import, but a deficiency is that these messages are 
not native MOOSE error messages. I.e., the same input error can be described differently when identified 
by Workbench and MOOSE. The MOOSE framework native diagnostic messages will be accessible to 
Workbench when the integration of the LSP into the MOOSE framework is complete. 

2.3.2.4 Navigation 

The Workbench presents the document hierarchy in a navigation panel and an editor-specific document 
dropdown menu. When the user clicks an entry in the navigation panel or document dropdown, a cursor is 
placed on the input component. This shows the full input context so that necessary changes to the input 
can be made more quickly (Figure 7). 

 
Figure 7. Document navigation panel and editor drop down items. 

A right-click on a reference will present a context menu with the option to Goto definition… (Figure 8). 
This takes the user directly to the location where the referenced input is defined, avoiding a time-
consuming search for the identifier. Additionally, navigation to the definition avoids possible distractions 
and confusion caused by ambiguous identifiers in the input document. 
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Beyond intra-input navigation, the Workbench also provides access to associated files via the Navigation 
panel’s Open associated files context menu and selection-based file open shortcut (Figure 9). File drag-
and-drop into Workbench is also supported. 

 
Figure 8. Select and open file paths in document and output. 

 
Figure 9. Navigation panel’s associated files context item. 

Improved Inter-document navigation, especially for MOOSE MultiApp inputs, is expected with the LSP 
implementation.  

2.3.2.5 Edit Accelerators 

Because engineers and the Workbench interact with different input formats, having bulk text operations 
during model development iterations can be useful. Workbench tracks the comment delimiters and 
provides application-specific comment creation. Additionally, using the CTRL + / key sequence will 
comment or uncomment content based on the lines selected. This enables users to quickly test the 
presence or absence of input fields.  

As with all integrated development environments, TAB indents current or selected lines, and 
SHIFT + TAB unindents current or selected lines. This enables quick formatting of document blocks for 
improved arrangement. In addition to the block-wise commenting and indentation, the Workbench 
supports column text editing using the ALT + MOUSE DRAG combination to select columns of text. 

The Workbench also allows users to embed data into a mathematical formula and evaluate it to the form 
required by the application. This is common when converting units from engineering to application 
specifications. This feature can improve model quality by encouraging the user to capture the data 
conversion formula in a comment, copy and paste the formula into the value field, and evaluate it to the 
form that the application is requesting. 
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Parameter sensitivity and uncertainty quantification studies are a best practice in modeling and 
simulation. The MOOSE framework provides stochastic tools for MOOSE applications; as described 
above, these tools are available through the application’s input fields in the Workbench. Prior work in the 
NEAMS campaign integrated the DAKOTA toolkit into the NEAMS Workbench [14]. The DAKOTA 
toolkit, combined with the Workbench’s template-editing capability, provides a tool set that enables 
engineers to conduct uncertainty quantification and optimization tasks. The Workbench’s template 
capabilities enable a user to turn a nominal application input into a template using the Navigation panel’s 
Create Template context menu item (Figure 10). 

 
Figure 10. Create template from nominal input document. 

Within a template file, any field can be converted to a parameter study attribute by selecting the field and 
clicking the Template context menu item or using the shortcut key sequence CTRL + T or 
COMMAND + T (macOS). The nominal text will be replaced with attribute delimiters and a selected 
placeholder NAME (Figure 11). Because the placeholder’s name is selected, the user can immediately 
begin typing the desired attribute name or parameter study expression. The template syntax is supported 
by the Workbench’s open-source Hierarchical Input Template Expansion engine (HALITE), which is a 
utility within WASP. 

 
Figure 11. Templated placeholder with preselected name ready for editing. 

2.4 DATA AND MESH INTERACTION 

The NEAMS Workbench supports 2D data plotting and general mesh visualization. General mesh 
visualization and analysis are enabled through the embedded ParaView data analysis and visualization 
application [15]. MOOSE’s comma-separated value output can be opened in Workbench and processed 
into interactive 2D plots. These 2D plots are highly configurable and can be saved to image, PDF, and 
SPF formats. As a native Workbench ASCII file format, SPF preserves the perspective and data in such a 
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way that shared files still contain the data’s full context and remain interactive. For example, when a data 
feature is zoomed and an SPF is generated, the reopened SPF will present the saved perspective, but the 
user can still pan, zoom, or edit other attributes of the data presentation. 

ParaView’s mesh capabilities are outside the scope of this document, but those specifically relevant to the 
NEAMS Workbench and MOOSE’s ExodusII file are highlighted. The NEAMS Workbench was updated 
to support quickly inspecting the blocks, side sets, and node sets contained in the MOOSE mesh files. 
Once the user has opened the mesh file, selecting an identifier and choosing Inspect from the associated 
context menu will instruct Workbench to deselect all mesh components except for the one to be inspected 
(Figure 12). 

 
Figure 12. Input originating the mesh inspection. 

Because ExodusII mesh files are considered advanced, interacting with the datasets in ParaView is not 
immediately intuitive and requires configuration before Workbench can inspect these data. There are two 
important toggles that must be checked. First, the user should ensure that the advanced properties are 
toggled on and set using the gear icon in the Visualization GUI’s Properties tab (Figure 13). 
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Figure 13. Toggle advanced Properties view, required to interact with Exodus sets. 

The second important toggle is the Sets listing, which becomes visible after the advanced properties are 
toggled on. If Sets are present, then checking the desired box and clicking on the Apply button will ensure 
that the desired Sets can be toggled on when inspection is requested via interactions in the input document 
(Figure 14). 

  
Figure 14. Set activation and application required for inspection from input file. 

Improvements to the NEAMS Workbench ParaView interface will continue as user feedback and requests 
are received and familiarity with the ParaView codebase increases. 
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3. MAINTENANCE 

As with all software, maintenance is an ongoing task that enables current and future development. The 
NEAMS Workbench had two notable maintenance activities in FY21: (1) the migration of RTE from 
Python 2 to Python 3 and (2) the GUI framework upgrade from Qt4 to Qt5. 

3.1 PYTHON 3 

The Workbench RTE uses an offline Miniconda environment to facilitate installation in non-networked 
locations and allow extensions for proprietary scenarios. The RTE was originally written in Python 2 
based on the availability of packages. With Python 2’s end of life in January 2020, migration to Python 3 
was long overdue, and the Workbench team decided to move the Miniconda environment to Python 3 in 
FY21. Unfortunately, testing identified gaps in the code coverage for remote job launch capabilities. 
Therefore, the Python 3 migration has not yet been completed. Although the supported version of Python 
is not yet being used, the offline Miniconda Python environment insulates the user and Workbench from 
such changes. Only developers and tool integrators are required to interact with Python 2 code. Python 2 
scripts can be written to be compatible with Python 3 to facilitate migration. 

3.2 Qt5 

The NEAMS Workbench uses the Qt GUI widget toolkit, which provides cross-platform widgets to 
reduce platform-specific development efforts. Although Qt5 was a significant update from the Qt4 toolkit, 
the NEAMS Workbench effort required minimal code changes. However, aa sizable effort was required 
to update the NEAMS Workbench software bundle, fixup, and deployment logic. Additionally, minor 
changes in the overall Qt widget look and feel have necessitated an ongoing review, with few updates 
required. With the migration from Qt4 to Qt5, the integrated visualization tool also changed from VisIt to 
ParaView. 

4. CONCLUSIONS 

In FY21, the NEAMS Workbench was updated with improved MOOSE application capabilities. 
Development iterations between the MOOSE and Workbench teams highlighted an improved long-term 
vision that better facilitates integration and usability. The NEAMS Workbench’s MOOSE input 
interpreter was updated to improve accuracy and the user experience. An overall improvement from 
35.50% to 96.12% was achieved in the parsing and validation accuracy of MOOSE input files. The 
ParaView visualization and data analysis application’s integration was also finalized. The Workbench 
MOOSE user experience improvements include the ability to open MultiApp referenced files and quickly 
inspect MOOSE mesh components. Lastly, the NEAMS Workbench team conducted two notable 
software maintenance activities: (1) they commenced the RTE from Python 2 to Python 3, and (2) they 
upgraded the graphical widget framework from Qt4 to Qt5. Future work will continue to improve 
integration through the incorporation of the LSP into the MOOSE framework and through additional GUI 
adaptations to suit MOOSE user needs. 

  



 

15 

5. ACKNOWLEDGMENTS 

This research was sponsored by the DOE NEAMS program. Special thanks to the collaborators who made 
contributions or provided direction that facilitated improvements. Specifically, thanks to Cody Permann 
and Brian Alger for their guidance and assistance with integration of the MOOSE framework 
applications, Andrew Slaughter and Daniel Schwen for language server discussion, and Jason Miller for 
integration of WASP into the MOOSE framework test suite. Thanks to Bob O’Bara, T. J. Corona, Ben 
Boeckel, and Utkarsh Ayachit for collaboration on, and contributions to, the ParaView visualization 
toolkit integration within Workbench. Additional thanks to Kaylee Cunningham for valuable testing and 
feedback for MOOSE BISON. 

  



 

16 

6. REFERENCES 

1. Lefebvre, R. A., Langley, B. R., and Thompson, A. B. M3MS-16OR0401086 – Report on NEAMS 
Workbench Support for MOOSE Applications. ORNL/TM-2016/572. Oak Ridge, TN: Oak Ridge 
National Laboratory, 2016. https://doi.org/10.2172/1328333. 

2. Lefebvre, R. A., Langley, B. R., Miller, L. P., Delchini, M. G., Baird, M., and Lefebvre, J. P. NEAMS 
Workbench Status and Capabilities. ORNL/TM-2019/1314. Oak Ridge, TN: Oak Ridge National 
Laboratory, 2019. https://www.doi.org/10.2172/1570117. 

3. Stauff, N., Lartaud, P., Jung, Y. S., Lee, C. H., Zeng, K., and Hou, J. Status of the NEAMS and ARC 
Neutronic Fast Reactor Tools Integration to the NEAMS Workbench. ANL/NEAMS-19/1. Argonne, 
IL: Argonne National Laboratory, 2019. https://doi.org/10.2172/1570009. 

4. Stauff, N., Lee, C., Shriwise, P., Miao, Y., Hu, R., Vegendla, P., and Fei, T. Neutronic Design and 
Analysis of the Holos-Quad Concept. ANL/NSE-19/8. Argonne, IL: Argonne National Laboratory, 
2019. https://doi.org/10.2172/1524786. 

5. Fan, Y., Delchini, M. G., and Lefebvre, R. A. “Verification of Nek4nuc (Nek5000 Integrated in 
NEAMS Workbench) via Turbulent Pipe Flow Simulation.” Presented at the ANS Winter Meeting 
and Nuclear Technology Expo, Chicago, IL, November 2020. 
https://www.osti.gov/servlets/purl/1731054 

6. Cunningham, K. M., Powers, J. J., and Lefebvre, R. A. Modeling the IFR-1 Experiment: A BISON 
Metallic Fuel Benchmark. ORNL/TM-2019/1270. Oak Ridge, TN: Oak Ridge National Laboratory, 
2019. https://doi.org/10.2172/1649544. 

7. Zeng, K., Stauff, N. E., Hou, J., and Kim, T. K. “Development of Multi-Objective Core Optimization 
Framework and Application to Sodium-Cooled Fast Test Reactors.” Progress in Nuclear Energy 120 
(February 2020). https://doi.org/10.1016/j.pnucene.2019.103184. 

8. Stauff, N., Maronati, G., Ponciroli, R., Ganda, F., Kim, T., Taiwo, T., Cuadra, A, Todosow, M., 
Talbot, P., Rabiti, C., Dixon, B., and Kim, S. Daily Market Analysis Capability and Results. 
ANL/NSE-19/5. Argonne, IL: Argonne National Laboratory, 2019. https://doi.org/10.2172/1511150. 

9. Microsoft Corporation. “Language Server Protocol Specification – 3.16.” Updated December 14, 
2020. https://microsoft.github.io/language-server-protocol/specifications/specification-current. 

10. “JSON-RPC 2.0 Specification.” Updated January 4, 2013. https://www.jsonrpc.org/specification. 

11. “Implementations – Tools Supporting the LSP.” https://microsoft.github.io/language-server-
protocol/implementors/tools. 

12. Dominesey, K. A., Kowal, P. J., Eugenio, J. A., and Ji, W. “Scientific Workflows for MCNP6 and 
PROTEUS within the NEAMS Workbench.” EPJ Web Conferences 247, 06052 (2021). 
https://doi.org/10.1051/epjconf/202124706052. 

13. Asenov, D., Hilliges, O., and Müller, P. “The Effect of Richer Visualizations on Code 
Comprehension.” Presented at the 2016 CHI Conference on Human Factors in Computing Systems, 
San Jose, CA, USA, May 7–12, 2016. https://doi.org/10.1145/2858036.2858372  

14. Swiler, L. P., Lefebvre, R. A., Langley, B. R., and Thompson, A. B. Integration of Dakota into the 
NEAMS Workbench. SAND2017-7492. Albuquerque, NM: Sandia National Laboratories, 2017. 
https://doi.org/10.2172/1372616. 

15. Ahrens, J., Geveci, B., and Law, C. “ParaView: An End-User Tool for Large Data Visualization.” 
Part 9, Chap. 7 in Visualization Handbook. Elsevier, 2005. 


